If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+32x+80=0
a = -16; b = 32; c = +80;
Δ = b2-4ac
Δ = 322-4·(-16)·80
Δ = 6144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6144}=\sqrt{1024*6}=\sqrt{1024}*\sqrt{6}=32\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-32\sqrt{6}}{2*-16}=\frac{-32-32\sqrt{6}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+32\sqrt{6}}{2*-16}=\frac{-32+32\sqrt{6}}{-32} $
| 4x+5x+7=43 | | 20x=-17 | | -16^2+32x+80=0 | | 2m^2-2=m^2 | | 2(4w-6=36 | | 2x-5=300 | | (x-6)(5x+1)-2x(x-6)=0 | | x=2x+1=x+x=1 | | 3x-10=2x+35 | | -5x-12=3+16 | | 5(x-2)^2=50 | | 8x+2+5x-4=12 | | a=−32 | | 3x^2+7=10x | | 50-3p=p | | (p)+(2p)+(p-10)=70 | | 20j=4 | | 6w+12=-6 | | X-3/5+X-4/7=6-2x | | 3/8c−2=3/2c−12 | | 2x+8x=3=x+4x=6 | | 13–2x=-7 | | t+2t-3=30 | | x^2+14x-486=0 | | 9a+-72=-10 | | x^2+9,7^2=(2x)^2 | | 4x^2-8x+92=-6 | | 25x+3+5x=17+40+3x | | -4z+15=27 | | 3x+2x=8=-2/3x+4 | | 2x+2+2x+2=10+1 | | 0=-16.1x^2+20.57x+3 |